About Me
I am a Senior Software Engineer specialized in AI, HPC at the NVIDIA headquarters located in Santa Clara, California. I received my PhD degree form the University of Illinois at Urbana-Champaign. My research interests include artificial intelligence, machine learning and deep learning, physics-informed neural networks, uncertainty quantification, and computational mechanics. Primarily, I am interested in developing metamodels based on deep neural networks to accelerate stochastic computations in engineering systems, with applications in reliability analysis, design optimization, Bayesian inference, and computational fluid dynamics. Currently I am a member of the NVIDIA SimNet team. You may want to take a look at my CV, my Google Scholar profile, and my Researchgate profile.
Projects
In this project, I sought to improve the reliability analysis of transportation networks following extreme earthquake events. I have developed a novel deep learning method that accelerated seismic reliability analysis of large transportation systems. My contributions to this research include two different deep neural network models: a classifier model to speed up the connectivity determination of networks, and an end-to-end model to replace a group of modules in the transportation network reliability analysis pipeline. These models serve as useful tools for optimizing mitigation and preparedness procedures before extreme events happen, and also for improving emergency response after extreme events. I have ultimately developed a general framework for the accurate and accelerated seismic reliability analysis of transportation systems. This improved technique accounts for the inherent uncertainties in these systems and during earthquake events. This deep learning-based method exhibited improved performance over other machine learning-based reliability analysis techniques. Take a look at this poster.
Deep learning for random PDEs
In this research project, I have turned my focus to Partial Differential Equations (PDEs), which are useful for describing a variety of physical phenomena relevant to infrastructure analysis, including earthquake wave propagation and the prediction of traffic flow and fluid flow. The reliable analysis of these phenomena often requires taking into account the inherent randomness in the system. I have proposed new algorithms that make use of deep neural networks in order to improve upon conventional random PDE solution methods. Compared to previous approaches, my proposed methods are straightforward and achieve computational efficiency by optimizing the usage of advanced computer hardware, such as GPUs. These methods result in accurate solutions that have closed analytical forms and are thus able to be easily transferred to subsequent calculations. Moreover, these methods result in solutions that are real-time executable and thus are suited to the prediction of dynamic physical phenomena, such as traffic flow. While other solution methods are problem-dependent and suffer from the curse of dimensionality, my proposed algorithm is very well suited to different forms of random PDEs, and alleviates the curse of dimensionality issue. Ultimately, my proposed deep neural network modeling techniques offered a significantly beneficial approach to solving high-dimensional random PDEs common in engineering as well as a variety of other fields. Take a look at this presentation.
Mesh-free simulation of multiphase flows
In this project, I have contributed to the accurate simulation of numerous real-world free-surface problems, such as dam-breaks, landslides, and other phenomena that are often induced by earthquakes. Based on these simulations, I have devised an algorithm for simulating multiphase free-surface flows, which serves as a tool for simulating free-surface flow phenomena occurring in both industry and the natural world. I have applied his algorithm, which is called the multiphase MPS method, to a number of real-world phenomena in order to verify its accuracy and illustrate some of its many applications. Further, I have built upon my original algorithm in order to develop a multi-resolution MPS method, which allows for the simulation of different types of fluid flow in different resolutions. I have then confirmed that, compared to standard methods, the proposed methods reduce the computation cost of free-surface flow simulation. As such, my work on this project has addressed one of the most crucial problems in the field with regard to computational fluid dynamics. Take a look at this poster. ASME Awarded Project
Regularization of deep neural networks
Many science and engineering problems require repetitive simulation runs of a model with different input values. Examples of these problems include design optimization, model calibration, and sensitivity analysis. However, in many real-world problems, obtaining a reliable outcome requires large number of these solves, which can be prohibitive given the available resources. One way to alleviate this burden is to construct approximate models that mimic the solution behavior for these systems. Deep neural networks are among the most powerful machine-learning tools which can be used effectively for construction of these approximate models. However, deep neural networks suffer from two shortcomings: they are not physically interpretable, and are prone to overfitting. In this research I present a method for training deep neural networks for systems that are subject to known governing laws which are in the form of a partial differential equation. In the proposed method, I make use of the available prior knowledge about the governing laws by systematically penalizing any violation of the metamodel form these laws. It is shown that the proposed method offers two main advantages: (1) it effectively prevents overfitting and results in significantly smaller modeling errors, when compared to other state of the practice training methods; and (2) it results in models that are physically interpretable, as opposed to the ones that are trained using state of the practice training methods. Take a look at this presentation.
Predicting train delay in Netherlands
Train delay is a critical problem in railroad operations, which has led to the development of analytical and simulation-based approaches to estimate it. Passenger train transportation is a key mode of transport in the Netherlands that serves more than a million passengers daily. Reliable real-time data is of high importance for smooth punctual operations. In this work, my goal was to predict passenger train delays in Netherlands. To this end, using the data provided by the Netherlands Railways and including planned timetable, actual historical train performance, crew schedule, rolling stock circulation, infrastructure data, and weather conditions, I proposed a novel bi-level random forest approach. At primary level, a random forest model is used as a classifier to predict whether the current train delay will increase, decrease or remain unchanged. At secondary level, random forest regression models are used to quantify the change in delay. To validate the approach, I have compared random forest with several alternative approaches including linear regression, multinomial logistic regression, decision tree, K-nearest neighbors, and support vector machines/regression. It is observed that the proposed bi-level random forest outperforms these alternative approaches in terms of prediction accuracy for passenger train delay prediction in Netherlands railways. Take a look at this presentation. INFORMS Awarded Project
Uncertainty Quantification in Cardiovascular Simulation
Patient-specific cardiovascular simulations enable non-invasive assessment of hemodynamics in heart and major blood vessels for patients suffering from cardiovascular disease. This data is not readily available from standard clinical measurements, yet it can offer key insights into disease progression and subsequent physiologic responses, and thus aid in surgical and treatment planning and clinical decision-making. The confidence in the data output from cardiovascular simulations depends directly on our level of certainty in simulation input parameters. The sources of uncertainties in cardiovascular simulation include clinical data, geometry, boundary conditions, material properties, and simulation parameters. Simulations are only as accurate as the data that goes into them and a thorough study is needed to determine how variations in these input data affects the outputs. Therefore, patient-specific computational simulations aid in surgical and treatment planning and clinical decision-making. In this study, I have proposed an uncertainty-aware patient-specific cardiovascular simulation framework for enhanced health monitoring and treatment planning. Take a look at this poster.
Experience
Journals
- Nabian, M.A., and Meidani, H., Deep Learning for Accelerated Seismic Reliability Analysis of Transportation Networks, Computer-Aided Civil and Infrastructure Engineering, 33 (6), 443-458 (2018).
- Nabian, M.A., and Meidani, H., A Deep Learning Solution Approach for High-Dimensional Random Differential Equations, Probabilistic Engineering Mechanics (Under Review).
- Nabian, M.A., and Meidani, H., Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis, Journal of Computing and Information Science in Engineering (Under Review).
- Nabian, M.A., Alemazkoor, N., and Meidani, H., Predicting Near-Term Train Schedule Performance and Delay Using Bi-Level Random Forests, Transportation Research Records, In Press.
- Nabian, M.A., and Farhadi, L., Multiphase Mesh-Free Particle Method for Simulating Granular Flows and Sediment Transport, Journal of Hydraulic Engineering, 143 (4), 04016102 (2016).
Conference Proceedings
- Nabian, M.A., and Meidani, H., Accelerating Stochastic Assessment of Post-Earthquake Transportation Network Connectivity via Machine-Learning-Based Surrogates, Transportation Research Board, (2018).
- Nabian, M.A., and Meidani, H., Uncertainty Quantification and PCA-Based Dimension Reduction for Parallel Monte Carlo Analysis of Infrastructure System Reliability, Transportation Research Board(2017).
- Nabian, M.A., and Farhadi, L., Numerical Simulation of Solitary Wave Using the Fully Lagrangian Method of Moving Particle Semi Implicit, In ASME 2014 4th Joint US-European Fluids Engineering Division, American Society of Mechanical Engineers (2014).
- Nabian, M.A., and Farhadi, L., Stable Moving Particle Semi Implicit Method for Modeling Waves Generated by Submarine Landslides, In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers (2014).
- Nabian, M.A., and Farhadi, L., Simulating Water Waves Generated by Underwater Landslide with MPS and WC-MPS, In Proceedings of the 11th International Conference on Hydrodynamics (ICHD), 859-866. ISBN 978-981-09-2175-0 (2014).
Thesis
- Nabian, M.A., An Efficient Mesh-Free Particle Method for Modeling of Free Surface and Multiphase Flows, M.Sc. thesis, The George Washington University, 2015.
Presentations
- Nabian, M.A., and Meidani, H., An Efficient Solution Approach for High-Dimensional Random PDEs Using SGD and Deep Neural Networks, Engineering Mechanics Institute Conference 2018, Boston, MA (2018).
- Nabian, M.A., Alemazkoor, N., and Meidani, H., Predicting Near-Term Train Schedule Performance and Delay Using Bi-Level Random Forests, 2018 INFORMS annual meeting, Phoenix, AZ (2018).
- Nabian, M.A., Farhadi, L., Numerical Simulation of Solitary Wave Using the Fully Lagrangian Method of Moving Particle Semi Implicit, ASME 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, Illinois, USA (2014).
- Nabian, M.A., Farhadi, L., Stable Moving Particle Semi Implicit Method for Modeling Waves Generated by Submarine Landslides, ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Canada (2014).
Poster Presentations
- Nabian, M.A., Alemazkoor, N., and Meidani, H., Predicting Near-Term Train Schedule Performance and DelayUsing Bi-Level Random Forests, Transportation Research Board 98th Annual Meeting, Washington, DC (2019).
- Nabian, M.A., and Meidani, H., Deep Learning for Accelerated Reliability Assessment of Transportation Networks, Transportation Research Board 97th Annual Meeting, Washington, DC (2018).
- Nabian, M.A., and Meidani, H., Deep-Learning-Based Surrogates for Fast Prediction of Stochastic Civil Engineering Systems, 13th Coordinated Science Lab (CSL) Student Conference, Urbana, IL (2018).
- Nabian, M.A., and Meidani, H., Uncertainty Quantification and PCA-Based Model Reduction for Parallel Monte Carlo Analysis of Infrastructure System Reliability, Transportation Research Board 96th Annual Meeting, Washington, DC (2017).
- Nabian, M.A., and Meidani, H., Uncertainty Quantification in Patient-Specific Cardiovascular Simulation forEnhanced Health Monitoring and Treatment Planning, 4th Health Care Engineering Systems Symposium, Champaign, IL (2017).
- Nabian, M.A., and Farhadi, L., A Mesh-Free Particle Model for Simulation of Free-Surface Multiphase Flows, SEAS Student Research and Development Showcase, The George Washington University, Washington, DC (2015).
- Nabian, M.A., and Farhadi, L., Numerical Simulation of Complex Free Surface Flows Using a Stable Mesh-Free Lagrangian Method, SEAS Student Research and Development Showcase, The George Washington University, Washington, DC (2014).
Invited Talk
- Nabian, M.A., Deep Learning for Accelerated Seismic Reliability Analysis of Transportation Networks, Brown Bag Seminars, University of Illinois at Urbana-Champaign, Urbana, IL (2018).
- Nabian, M.A., Deep Learning for Accelerating Infrastructure System Reliability Analysis, Kent Seminars, Illinois Center for Transportation, Rantoul, IL (2017).
Teaching
Recipient of the Graduate Teaching Assistantship Certificate, the George Washington University (2014).
Academic Supervision:
Jameel Kaddo (2017). Project: Deep Learning for Accelerated Reliability Analysis of Infrastructure Systems.
Alia Taha (2016). Project: Accelerated Infrastructure System Reliability Analysis Using Dimension Reduction.
Courses Taught:
- Uncertainty Quantification, University of Illinois at Urbana-Champaign (2018).
- Engineering Economics and System Engineering, University of Illinois at Urbana-Champaign (2017-2018).
- Engineering Risk and Uncertainty, University of Illinois at Urbana-Champaign (2017, 2019).
- Hydraulics and Hydraulic Lab, George Washington University (2014, 2015).
- Analytical Methods in Engineering, George Washington University (2013).
- Numerical Analysis, K.N Toosi University of Technology, (2013).
- Mechanics of Materials, Sharif University of Technology (2013).
- Loading of Structures, Sharif University of Technology (2012).
- Engineering Graphics, Sharif University of Technology (2012).
Education
University of Illinois at Urbana-Champaign
PhD in Civil Engineering
2015 - Present
Concentration: Sustainable and Resilient Infrastructure Systems
Minor 1: Computational Science and Engineering
Minor 2: Statistics
GPA: 3.90
Selected courses: Deep Learning, Applied Machine Learning, Uncertainty Quantification, Computational Statistics, Applied Bayesian Methods, Random Precesses, Numerical Analysis.
George Washington University
MSc in Civil Engineering
2013 - 2015
Concentration: Water Resources Engineering
GPA: 3.96
Selected courses: Analytical Methods in Engineering, Finite Element Methods, Fluid Mechanics, Computational Fluid Dynamics, Free Surface Flow.
Sharif University of Technology
BSc in Civil Engineering
2009 - 2013
Concentration: Civil Engineering
GPA: 16.0
Selected courses: Numerical Computation, Computer Application in Civil Engineering, Engineering Probability and Statistics, Computer Programming.
Honors & Awards
- Cited in the List of Teachers Ranked as Excellent by the Center for Teaching Excellence, University of Illinois at Urbana-Champaign, Spring 2018 and Fall 2018 (two time winner).
- Winner of the second prize in the 2018 INFORMS Railway Application Section problem solving competition. Full Story
- Natural Hazards Engineering Research Infrastructure (NHERI) Travel Award, for Researchers Workshop: Advanced Simulation for Natural Hazards Mitigation, Lehigh University, Bethlehem, PA (2017).
- Natural Hazards Engineering Research Infrastructure (NHERI) Travel Award, for NSF NHERI Wall of Wind (WOW) Experimental Facility User Workshop, Florida International University, Miami, FL (2017).
- Distinguished Graduate Teaching Assistantship Award, University of Illinois at Urbana-Champaign (2016).
- Graduate Research Assistantship Award, University of Illinois at Urbana-Champaign, (2015-Present).
- Graduate Fellowship Award, University of Illinois at Urbana-Champaign, (2015-2016).
- American Society of Mechanical Engineers (ASME) Award, for the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, TX (2015).
- American Society of Mechanical Engineers (ASME) Award of Excellence for Outstanding Paper, ASME-JSME-KSME Joint Fluids Engineering Conference, Seoul, Korea (2014). Full Story
- Named ASME Fluids Engineering Division Graduate Scholar of the Year, Award Received During the ASME 2014 4th Joint US-European Fluids Engineering Division, Chicago, IL (2014). Full Story
- Graduate Research Assistantship Award, The George Washington University, (2013-2015).
- Graduate Teaching Assistantship Award, The George Washington University, (2013-2015).
- Recipient of the National Organization for Educational Testing (NOET) Certificate of Recognition for Exceptional Talent (for ranking 342 among more than 400,000 participants in the nationwide university entrance exam), (2009).